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We make a critical analysis of the basic concepts of the Jauch-Piron (JP) 
approach to quantum physics. Then, we exhibit a formalized presentation of the 
mathematical structure of the JP theory by introducing it as a completely 
formalized syntactic system, i.e., we construct a formalized language L e and 
formally state the logical-deductive structure of the JP theory by means of L e. 
Finally, we show that the JP syntactic system can be endowed with an intended 
interpretation, which yields a physical model of the system. A mathematical 
model endowed with a physical interpretation is given which establishes (in the 
usual sense of the model theory) the coherence of the JP syntactic system. 

1. I N T R O D U C T I O N  

The Jauch -P i ron  (JP) approach  to quan tum physics (QP) (here also 
called JP theory) is widely known. Its roots lie in the early Birkhoff and 
Von N e u m a n n  (1936) paper  on the logic o f  quan tum mechanics,  and it has 
been extensively discussed (Piron, 1964, 1972, 1976a,b, 1977, 1978, 1981; 
Jauch,  1968, 1971; Jauch  and Piron, 1969; 1970). Recently, it has been 
developed along original lines and amalgamated  with the "opera t iona l  
a p p r o a c h "  to QP proposed  by Foulis et aL (1983). 

The JP theory has been criticized f rom several points o f  view (e.g., 
Mielnik, 1976; Cooke  and Hilgevoord,  1981; Hadjisavvas et aL, 1980, 1981; 
Thieffine, 1983; Hughes,  1981). In particular,  Mielnik (1976) and, more  
recently, Hughes  (1981) have censured the lattice operat ions in t roduced by 
Piron, while Hadjisavvas et al. (1980, 1981; Thieffine, 1983) have argued 
about  the coherence (which they prove) and the possibility o f  giving a 
physical interpretation o f  the axioms (which they deny) o f  the theory. 
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An extensive answer to the latter criticism has been given by Foulis 
and Randall (1984), making reference to the background established in 
Foulis et aL (1983) (suitably condensed and modified); yet, their answer 
was rejected by Hadjisavvas and Thieffine (1984) and the polemics do not 
seem exhausted. 

Our opinion about the matter can be synthetized as follows. 
1. Most criticism to the JP theory can be proved erroneous or based 

on a miscomprehension, especially those raised against the late formulations 
of the theory, even if Foulis eta/.  (1983) is not taken into account. Yet, the 
usual presentations of the JP approach to QP are unsatisfactory from an 
epistemological viewpoint, and contain semantical ambiguities which have 
fostered misunderstandings. Thus, a critical discussion of the JP theory and 
a more formal presentation of it seem desirable. 

2. The development of the JP theory presented in Foulis et aL (1983) 
is not strictly needed in order to defend the theory; moreover, it seems to 
be exposed to many of the epistemological objections which can be raised 
against the standard formulation of the JP theory [in particular, the existence 
of "hidden" axioms in Foulis and Randall (1984), hence a coherence 
problem, is not recognized]. A discussion about this subject has been already 
carried out by Cattaneo and Nistic6 (1986). 

Thus, rather than entering the aforesaid polemics and discussing the 
above criticisms in detail, we intend to make a critical analysis of the 
foundations of the JP approach, mainly referring to the Piton presentation 
of it and dispensing with Foulis et al. (1984). This analysis endows us with 
the necessary background in order to propose a formalized presentation of  
the theory which takes into account some relevant epistemological distinc- 
tions, so as to eliminate many ambiguities. In this framework, we intend to 
give a new proof  of the (relative) coherence of the JP approach by means 
of a mathematical model which has a direct physical interpretation in QP 
[so that it gives a possible answer to a challenge in Hadjisavvas et al. (1980). 

More specifically, we proceed as follows. 
First, we schematize in Section 2 the essentials of the JP approach to 

QP according to the Piron presentation. 
Second, we discuss in Section 3 some epistemological collapse in this 

presentation, which obscures, in particular, the distinction between the 
mathematical structure of  the theory and its interpretation; the role of some 
"physical definitions" introduced by Piron, and the existence of some hidden 
axioms besides the axioms which are explicitly stated; the convenience of 
introducing some new predicates, like "false" and "indeterminate," which 
clarify, by opposition, the meaning of Piron's predicate "true";  the structures 
of the sets of questions and of propositions, and their differences; the 
improper transfer of results from one of these structures to the other, which 
has given origin to some apparent "paradoxes" in the JP theory. 
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Third, we comment in Section 4 on some advantages of a formalized 
presentation of the basic structures of the JP approach. Then, we construct 
a syntactic scheme for a language Le which formalizes Piron's mathematical 
language, and formulate all the basic axioms, some preliminary results, and 
the fundamental theorem of the JP theory by means of Le. We also add 
some technical comments on our language Le, show that it can be suitably 
enlarged so as to embody the new predicates introduced in Section 3, and 
note the impossibility of  weakening some axioms of the theory without 
losing some of its essential features. 

Fourth, we propose in Section 5 an intended interpretation of Le, that 
is, an interpretation on the physical domain considered by JP; from this, 
an interpretation of axioms, definitions, and results is derived (it should be 
observed that neither Le nor the "hidden"  axioms of the JP theory nor 
Piron's axioms C, P, A express the difference between classical and quantum 
physics; this follows from well-known features of the JP approach and 
holds unchanged in the formalized theory). 

Fifth, we discuss in Section 6 the coherence problem for the set of 
axioms introduced in Section 4 and prove the (relative) coherence of the 
JP theory by giving a mathematical model for its mathematical structure; 
we also discuss the physical meaning of our model (it should not be confused 
with the usual Hilbert model for propositional systems given by Piron, 
which would not be sufficient for our purposes), and show that some 
properties of the question structure which have been evidenced by other 
authors (Hadjisavvas et al., 1980, 1981; Thieffine, 1983) are realized in our 
model. 

Finally, we give in the Appendix a formal proof  of the fundamental 
theorem of the JP theory, thus showing that the set of "hidden"  axioms 
explicated in Sections 3 and 4, together with Piron's set of axioms, is 
adequate in order to obtain all the basic results of the theory. 

2. THE JP  APPROACH 

In the JP approach to questions and propositions, as presented mainly 
in Piron's papers, some metatheoretical statements are premised which 
express Piron's assent to the "program of realism," formulated as follows: 

(the aim of physics is) to give a complete description of each individual 
system as it is in all its complexity, 

and which coherently define what is meant with the expression "physical 
system" (Piton, 1976a): 

by a physical system we mean a part of real world thought of as existing 
in space-time and external to the physicist. 
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Having thus established an epistemological standpoint, the basic concept of 
question is introduced by observing that the statements of the physicist 
about a physical system can be checked by experiments, and that such a 
test consists, in general, of  a measurement, the result of which is expressed 
by "yes" or "no."  

PD2.1. We shall call a question every experiment leading to an alterna- 
tive of which the terms are "yes" or "no"  (Piron, 1976a). 

Thus, schematically, a question consists of (a) a measuring apparatus, (b) 
instruction for its use, and (c) a rule interpreting the possible results in 
terms of "yes" or "no"  (Piron, 1977). 

Then, the following physical definitions are introduced. 

PD2.2. There exists a trivial question, which we shall denote as I, and 
which consists in nothing other than measuring anything (or 
doing nothing)and stating that the answer is "yes" each time 
(Piron, 1976a). 

PD2.3. If a is a question, we denote by a ~ the question obtained by 
exchanging the terms of the alternative (Piron, 1976a). 

It follows from PD2.3 that, if the result of a for a single individual system 
is "yes," then the result of a ~ is "no,"  and vice versa; thus, a ~ can be 
measured by the same equipment used for the measurement of a. 

PD2.4. If {a~} is a family of questions, we denote by l-[i ai the question 
defined in the following manner: one measures an arbitrary 
one of the ai and attributes to 1-[~ a~ the answer thus obtained 
(Piron, 1976a). 

It follows from PD2.4 that (a) the measuring apparatus for I-[~ a~ is the set 
of the measuring apparatuses for the a~; (b) the instructions for the use of 
the apparatus are: (1) one chooses at random one of the ai in the family 
and (2) one performs the corresponding experiment on a single individual 
physical system obtaining one of the two possible results, either "yes"  or 
"no";  (c) the rule for interpreting the obtained result is that of attributing 
it to [I~ a~. It must be stressed that the above physical definitions involve 
measurements of questions on a single individual physical system. 

Now, Piron introduces the following definition of the diadic predicate 
"true":  

PR2.1. When the physical system has been prepared in such a way 
that the physicist may affirm that in the event of  an experiment 
the result will be "yes," we shall say that the question is certain 
or that the question is " true" (Piron, 1976a). 
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Then, the following derived definitions are introduced. 

D2.1. For certain pairs of questions/3, % one may have the following 
relation: 

If the physical system is prepared in such a way that 13 is true, then 
one is sure that 3' is true. 

We denote it as c~ </3 and read it as "/3 less than 3" (Piron, 1972). 
(Hence, < is a quasiorder relation.) 

D2.2. For every pair of questions /3, 3, the relation < defines an 
equivalence (Piron, 1972) 

/ 3 - 3 '  iff /3<3' and 3,</3 

D2.3. We define a proposition as an equivalence class of questions, 
and denote by b the equivalence class containing the question 
/3; i.e., b={y]3"-/3, 3' a question} (Piron, 1972). 

D2.4. If  [the question] /3 is true, then any 3 ' - /3  is true. Hence, we 
can say that the proposition [b = {3'1 3' - /3 ,  3' a question}] is true 
iff any and therefore all of its questions are true (Piron, 1972). 
So, there is a one-to-one correspondence between propositions 
and [physical] properties [ . . . ] .  If one given system has been 
prepared in such a way that we can affirm that in the event of 
the experiment the expected result would be certain, we will say 
that the corresponding property is an actual property of the 
system, in opposition to the other properties, which are only 
potential (Piron, 1981). 

D2.5. We denote by ~ the set of propositions defined for a given 
physical system (Piron, 1972). 

D2.6. A (partial) ordering relation is defined in 5f (Piron, 1972) 

b < d  iff / 3 < 6  with / 3 c b  and 6 ~ d  

By making use of the basic concepts and definitions above, Piron proves 
the fundamental theorem of the theory. 

Theorem 2.1. The set of propositions ~ is a complete lattice (Piron, 
1976a). 

Then, Piton introduces some further derived symbols, the definitions 
of which we make here explicit as follows. 

D2.7. We denote by ~ and ~ the meet and join in ~,  respectively. 
D2.8. We denote by O the question I v. 
D2.9. We denote by ~ and 0 the propositions that contain I and O, 

respectively. 
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By making use of the above symbols, the following definition of compatible 
complement is stated in the Piron presentation of the theory. 

D2.10. Let b be a proposition and c a complementary proposition 
for b: 

b u c = ~  and b n c = O  

We shall say that c is a compatible complement for b if there 
further exists a question/3 such. that 

/ 3cb  and /3~ec 

that is, if there exists in the equivalence class b a question /3 
such that/3 ~ is in the equivalence class c (Piron, 1976a). 

Now, Piron introduces two fundamental axioms of the theory. 

Axiom C. For each proposition there exists at least one compatible 
complement (Piron, 1976a) 

Axiom P. If b < c are propositions of 5f and if b' is a compatible 
complement for b and c' a compatible complement for c, then the sublattice 
generated by {b, b', c, c'} is a classical propositional system, that is to say, 
a distributive lattice (Piron, 1976a). 

From axioms C and P one easily deduces some further basic results 
of the theory. First, for every a c ~,  there exists in ~ one compatible 
complement only, which will be d~noted by a'. Second, the mapping 

': a c ~ - - ~ a '  c ~  

is an orthocomplementation in ~. Third, the lattice 5( is weakly modular. 
Finally, Piron states the third fundamental axiom of the theory as 

follows. 

Axiom A: 
A1. If b is a proposition different from 0, there exists an atom p < b. 
A2. I f p  is an atom and i fp  c~ b = 0, then p w b covers b (Piron, 1976a). 

A complete lattice satisfying C, P, and A is called by Piron a proposi- 
tional system. 

Thus, the basic definitions, axioms, and results that are needed in order 
to build up the theory are stated. Our exposition of the JP theory will 
therefore end here; indeed, we are interested in these basic elements only 
in the present paper. 
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3. S O M E  C R I T I C A L  R E M A R K S  A B O U T  T H E  J P  A P P R O A C H  

As we have an t i c ipa ted  in the In t roduc t ion ,  we wou ld  like to make  
some commen t s  and  a cr i t ical  analysis  in the presen t  sect ion on some o f  
the def ini t ions  and results  in Sect ion 2, and  on the JP a p p r o a c h  as a whole .  

Our  d iscuss ion  will  also give an answer  to some arguments  that  have 
been  ra ised  agains t  the JP a p p r o a c h  to QP. 

3.1. We begin  with some ep i s temolog ica l  r emarks  on the JP theory.  
Our  a rguments  will  be be t te r  u n d e r s t o o d  i f  we recal l  that ,  accord ing  to a 
largely accep ted  ep i s t emolog ica l  concept ion ,  usua l ly  ca l led  the standard 
epistemological conception, or received viewpoint, e.g. Bra i thwai te  (1953), 

C a r n a p  (1956, 1966), Nage l  (1961), and  H e m p e l  (1965), every phys ica l  
theory  consists  o f  two separa te  parts ,  as fol lows:  (a) a theoretical structure 
(or  apparatus) and  (b) a set o f  correspondence or  epistemic rules. 

Fu r the rmore ,  the theore t ica l  s t ructure  can be spli t  into the  fo l lowing  
componen t s :  (al)  a mathematical structure or calculus, which  is a pu re ly  
syntac t ica l  ax iomat i c  deduc t ive  system, and  (a2) an intended physical inter- 
pretation. 4 

Final ly ,  the  ma thema t i ca l  s t ructure  o f  the theory  may  be in te rp re ted  
over  a d o m a i n  o f  ma thema t i ca l  objects ,  thus  p rov id ing  a ma the ma t i c a l  

m o d e l  o f  the  theory.  
The above  dis t inc t ions ,  which  are ep i s t emolog ica l ly  relevant ,  are of ten 

ignored  in prac t ice ,  bo th  when  stat ing a theo ry  and  when  discuss ing it. This 
has been  a p r imary  source  o f  confus ion  and  p s e u d o p a r a d o x e s .  Thus,  in 
most  phys ica l  theor ies  the  co r r e spondence  rules are  not  expl ic i t ly  s ta ted  or  
men t ioned ,  s ince they are  impl ic i t ly  (and  incorrec t ly! )  ident i f ied with some 
phys ica l  i n t ended  in t e rp re t a t ion  (it shou ld  be no ted  that ,  accord ing  to an 
ins t rumenta l i s t  v iewpoin t ,  the only  e lements  which  are logica l ly  needed  
when  set t ing up  a phys ica l  theory  are the  ma thema t i ca l  s t ructure  and  the 
c o r r e s p o n d e n c e  rules,  whi le  any  in t ended  phys ica l  in te rp re ta t ion  has a 
pu re ly  eur is t ic  role) .  Fu r the rmore ,  no ident i f ica t ion  is legi t imate  be tween  

4The intended physical interpretation and the correspondence rules provide two epistemologi- 
cally different interpretations of the mathematical structure. More specifically, the former is 
a complete and direct interpretation of the calculus over a domain of physical objects, usually 
having the status of theoretical entities, which starts from the axioms and yields an isomorphic 
physical model of the mathematical structure; the latter provides a partial and indirect 
empirical interpretation of the calculus over a domain of observative entities, which starts 
from the (nontrivial) theorems. The differences between these two kinds of interpretation, 
which generally correspond to the canonical differences between a theory and its models, 
have been analyzed in detail by Braithwaite (1953, 1960); for further discussion on the subject, 
see also Duhem (1914) and Groenewold (1961). We remark that the word "intended" here 
outlines the privileged role of the interpretation considered in (a2) with respect to the other 
physical models of the calculus which are abstractly possible. 
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the mathematical  structure and its physical model ;  yet, these often are not  
distinguished, especially by those authors who share a realistic attitude. 
Besides, the mathematical  structure must  also be distinguished f rom its 
mathematical  models (e.g., the mathematical  structure o f  QP must  not  be 
confused with the Hilbert space model  for QP); it may be interesting to 
observe that  in many  cases a mathematical  model  may be obtained by 
considering some current privileged mathematical  representat ion o f  the 
physical  objects considered in the intended physical  interpretation. 

Let us come now to the JP theory. First, JP never explicitly deal with 
(b). We deem that  the JP interpretation is an intended interpretation in the 
sense specified above (it is indeed direct and complete;  fur thermore,  it 
ranges over infinite sets o f  physical objects, so that these necessarily have 
the status o f  theoretical entities). Second, JP do not  distinguish between 
(al) and (a2): the basic mathematical  symbols and axioms of  the theory are 
in t roduced together with their physical interpretation (of  course, this is 
done  by making use o f  a metalanguage,  which consists o f  a part  o f  the 
natural language enriched with suitable technical symbols).  

In addi t ion to the above general remarks, we observe that JP never 
completely axiomatize their theory (it will be shown that Piron's  presentat ion 
contains four  h idden axioms) so that its basic assumption are not  quite 
unambiguous .  Finally, we also note that Piron's  assumption about  the 
existence o f  a one- to-one correspondence  between proposi t ions and proper-  
ties (see D2.4) does not  fit exactly with the usual meaning,  in logic as well 
as in physics, o f  the words "propos i t ion"  and "proper ty" ;  it is apparent ,  
in particular, that  more  than one property can generally be associated to a 
given proposi t ion  a, in the sense o f  Piron (more precisely, all those properties 
which are physically equivalent  to some proper ty  characterizing a). 5 

Thus, the JP formulat ion o f  their theory, while undoubted ly  adequate  
for physicist 's  use, is unsatisfactory f rom an epistemological viewpoint;  
significantly, as we have already observed, a number  o f  miscomprehensions  
have arisen about  its basic concepts.  

3.2. We now focus on the physical definitions in t roduced in Section 2 
and on the specific axioms of  the JP theory. 

5We recall that some primitive concepts in the JP approach are expressed in terms of more 
fundamental concepts in the formalism presented in Foulis et al. (1983); here, in particular, 
a mathematical representation is given for a physical system, the concept of state is introduced 
(this being in agreement with our remark at the beginning of Section 3.3), etc. In this 
framework, a sharp distinction is made [see also Foulis and Randall (1984)] between 
operationally testable propositions, which correspond to questions, and properties, which 
still correspond to JP propositions in the sense specified by D2.4, and do not necessarily 
admit an operational test. We will not comment about these (rather problematical) correspon- 
dences here; we will limit ourselves to the observation that the above remark about the use 
of the word "property" seems to apply even to Foulis et al. (1983). 
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The definitions PD2.1-PD2.4 state a correspondence between symbols 
(such as a, ~, I]) and objects of, or relations onto, a physical domain (the 
set of  questions ~ defined for a given physical system6); therefore, they 
may be classified as interpretation rules of  the theory. From these definitions, 
together with PR2.1, the following results can be obtained. 

A3.1. I is true. 
A3.2. For any question a, a ~ = a. 
A3.3. For any family of  questions {a~}, I]i ai is true iff each ai is true; 

furthermore, (I]i c~i) ~ is true iff IL a~ is true. 
A3.4. For any question a, a ~ true implies that a cannot be true. 

The derivation of A3.1-A3.4 requires that the aforesaid symbols be identified 
with their representatives or, more correctly, that the domain of symbols 
be " isomorphic"  (in some sense that will not be discussed here) to the 
physical domain. In a completely axiomatized (formalized or not) presenta- 
tion of the theory, the above procedure should be reversed. Indeed, A3.1- 
A3.4 should be assumed as specific axioms, while the physical interpretation 
(which is an " intended" interpretation, as we have already commented on 
in Section 3.1) expressed by PD2.1-PD2.4 should be introduced afterward, 
in order to endow the theory with a physical meaning. 

We observe that none of the statements A3.1-A3.4 (which, it must be 
stressed, express properties of  the set of  questions) is stated as an axiom 
in the JP approach.  Rather, A3.1 appears as an obvious consequence of 
PD2.1, PD2.2, and PR2.1, while A3.2 and A3.4 trivially follow from PD2.1, 
PD2.3, and PR2.1 (A3.4, establishing a connection between the truth of  the 
question a and a ~). With regard to A3.3, which follows from PD2.1, PD2.4, 
and PR2.1, we note that the second part  can be reformulated by writing 
that (I~i ai)~ - IL a~'. Now, Piron states that the stronger equation (I]i ozy  = 
I]~ a~ can be easily derived from PD2.1-PD2.4 (1976a). This derivation 
does not seem actually possible, as also suggested by the fact that the 
physical arrangements corresponding to (lqi c~) ~ and [L c~, according to 
the rules stated by Piron, d o n o t  exactly coincide. Of  course, the equality 
could be assumed (thus adding something new to the content of  PD2.1- 
PD2.4); but such an assumption is not needed, as we will prove in the next 
section, and we will dispense with it from now on. 

6The specific~ttion "defined for a given physical system" is ours, and it seems necessary in 
order to avoid a number  of  difficulties which arise (in particular, in the interpretation of I] 
and of the predicate true) if ~ is an arbitrary set of  questions, or the set of  "all the conceivable 
questions." We think that this specification is coherent with the JP viewpoint, since reference 
to a given physical system is made in PR2.1 and D2.1, and the statement "defined for a given 
physical system" explicitly appears in D2.5, where the set ~Lf of propositions is introduced. 
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Thus, we have identified four statements which actually are axioms of 
the JP theory, though they were never recognized as such. Therefore, 
A3.1-A3.4 should be adjoined to Piron's axioms C~ P, A (which mainly 
state properties of the set ~ of propositions) in order to obtain the set of 
all the basic axioms. Hence, a coherence problem occurs which cannot be 
solved by means of the standard models where axioms A3.1-A3.4 are not 
taken into account. 

Moreover, the question arises whether no further axiom is hidden in 
the standard formulation of the JP approach. We show in the Appendix 
that the fundamental theorem Of the JP theory, i.e., Theorem 2.1, can be 
deduced from A3.1-A3.4 only, by making use of  classical inference rules. 
Since all the basic results of the JP theory follow from the structure of the 
propositional system of 3~, which is established as a consequence of Theorem 
2.1 and axioms C, P, A only, we conclude that our set of seven specific 
axioms is adequate in order to express all the main content of  the JP theory. 

3.3. Let us comment now on PR2.1. Indeed, this statement is basic in 
Piron's work, and the interpretation of it has been a remarkable source of 
quarrels. 

We note first that the word "prepared" in PR2.1 implicitly introduces 
t he  set ~ of procedures which prepare single physical systems, each prepar- 
ation procedure consisting of a" macroscopic apparatus, which can also 
produce ensembles of identical physical systems under well-defined and 
repeatable conditions. 

Second, we observe that a question can be tested on each single system 
by giving as a result of  the measurement one of the two alternatives "yes" 
or "no" ;  but the word "certain" in PR2.1 implies that the question a can 
be said to be true with respect to a preparation x if and only if all the 
individuals of  any ensemble prepared according to x give rise to the answer 
"yes" (we do not enter here into the epistemological problems raised .by 
this kind of  "certainty," which involve empirical induction and /o r  theoreti- 
cal prediction). 

Third, we notice that the notion of true given in PR2.1 suggests that a 
predicate "false" also be introduced by means of a similar definition. 

PR3.1. When the physical system has been prepared in such a way 
that the physicist may affirm that in the event of an experiment 
the result will be "no,"  we shall say that the question is "false." 

The definition of "false" can be equivalently formulated as follows (because 
of PD2.3). 
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When the physical system has been prepared in such a way that the 
physicist may affirm that in the event of  an experiment the result will 
be "yes"  for the question a ~, we shall say that the question a is "false." 

By making use of  this new predicate, the above result A3.3 can equivalently 
be restated as follows. 

A3.Y. For any family of  questions {ai}, the product  question [Ii ai is 
true iff each a~ is true and it is false iff each ai is false. 

Furthermore, A3.4 can be restated so as to obtain the following coherence 
condition for the predicates " t rue" and "false." 

A3.4'. There is no preparat ion with respect to which a question a is 
simultaneously true and false. 

It also follows from PR2.1 and PR3.1 that for any question a some prepar- 
ation could exist such that a is neither true nor false; then a third diadic 
predicate " indeterminate" can be introduced as follows. 

PR3.2. When the physical system has been prepared in such a way 
that in the event of  an experiment neither the result "yes" nor 
the result "no"  is certain, we shall say that the question is 
"indeterminate." 

In the JP orthodox approach,  the predicates "false" and "indeterminate" 
are not explicitly defined and, in our opinion, this has been a source of 
misunderstandings. Indeed, our above analysis of  PR2.1 shows that we have 
two distinct levels of  description: the first one, which pertains to each single 
physical system, leads, for every question, to the alternatives "yes" or "no" ;  
the second one, which pertains to any preparat ion as a whole, leads, for 
every question, to the three alternatives "true,"  "false," and "indeter- 
minate." 

Now, we contend: 

The statements of  a physical theory involve the second level only, each 
statement about individual systems being either empirical or derived 
from the second-level statements of  physics. 

Thus, if one has sufficient physical reasons for stating that a proposit ion a 
is true for some preparat ion x (second level of  description), the property 
(or the properties) associated to a becomes an "actual"  property; then, it 
can be deduced that any single system p repa red  in the same way certainly 
gives the answer "yes" if  tested with any question belonging to a (first level 
of  description), so that the aforesaid property can be attributed to any single 
system prepared according to x. 
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Analogous arguments hold if the proposition a is false; in this case a 
is associated to a property (or properties) which never can be attributed to 
any single system prepared according to x. 

It must be noted that the predicate "false" defined in PR3.1 does not 
necessarily coincide with the usual logical predicate bearing the same name, 
which is defined as "not  true." Indeed, "false" and "not  true" coincide in 
classical physics, where, if the preparation x is perfectly known, all single 
systems prepared according to x must give the s a m e  answer (yes or no) if 
tested by a question a (i.e., no indeterminate question exists); but they do 
not coincide in quantum physics, where a question may be indeterminate 
notwithstanding a perfect knowledge of x. 

The introduction of the predicate "false" here is motivated by physical 
arguments. Indeed, as we have seen above, the statement "a  is false" allows 
well-defined predictions about single systems; furthermore, for every ques- 
tion a, a question a v exists whose truth implies the falsity of  a. None of 
these properties hold for the predicate "not  true. ''7 

Finally, if a is "indeterminate,"  the property a cannot be attributed 
or denied for any single system prepared according to x. 

3.4. Let us consider now the structures introduced in Section 2 on the 
set ~ of  questions and on the set ~ of propositions which are defined for 
some given physical system (see Section 3.2). On ~ a unary operation v 
and an undetermined order functor 11 are defined through PD2.3 and PD2.4, 
respectively. Furthermore, a quasiorder relation <,  hence an equivalence 
relation - ,  is introduced on ~ by means of D2.1, which is connected to IJ 
by the following properties (where we briefly write a [ I  fl instead of I-[~ ai 
whenever the family {at} reduces to a pair {a,/3}), whose proof  is immediate. 

f a  </3 iff ~r ~ [[/3 

for every a, /3, y ~ S2 ~ a [I /3 < a and  a [I /3 < fl 

I . y < a  and 7 < / 3  imply y < a  [[/3 

The crucial point here is that < is a quasiorder relation, not a partial order 
(indeed, the antisymmetric property does not hold), so that I] is not a meet 
in the sense of  lattice theory (note that the equivalence sign, not the equality 
sign, appears in the first condition above), nor is v an orthocomplementation.  
The latter statement becomes apparent  if one observes that the following 
equivalence can be deduced from the second part  of  A3.3: 

for every a , / 3 ~ ,  a I ~ / 3 - ( a v I - [ / 3 ~ )  ~ 

which shows that no de Morgan-type law links I] to ~. 

7It is noteworthy that Popper's (1968) argument against the Birkhoff and Von Neumann (1936) 
thought-experiment intended to show that the nondistributivity of the propositional calculus 
of quantum mechanics rests on an equivocation between "false" and "not true" as defined here. 
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Thus, the structure (~, It[, ~) is not an or thocomplemented lattice. 
Let us come to the set of  propositions ~ = ~ / _ .  Here, the quasiorder 

< defined on ~ induces a partial order <;  then, PD2.1-PD2.4 (more 
correctly, as we have observed in Section 3.1, A3.1-A3.4) allow one to show 
that (37, < )  is a lattice. Hence, two binary operators w (join) and c~ (meet) 
can be defined in 37 by means of standard mathematical techniques. By 
making use of  axioms C and P a new operation can be introduced in 37, 
which proves to be an orthocomplementation,  so that the "de Morgan laws" 
hold in 5f: 

for every a, b c f ,  {aub=(a'nb') '  
a~b=(a'ub') '  

Thus, the fundamental  structure of the or thocomplemented lattice is 
obtained. This structure enjoys some further properties (it is weakly modular  
because of axioms C and P, and it is atomic and satisfies the covering law 
because of axiom A), which are relevant in the development of  the theory. 

3.5. Our discussion in Section 3.4 about (s II, ~) and (3?, u ,  n ,  ') 
shows that these structures are essentially different and, in particular, that 
the mapping  

is not a homomorphism of (~, IF[, v) onto (37, c~, '). This must be stressed, 
since many arguments against the JP approach are based on an improper  
transfer of  results from (37, c~, ') to (~, [[, ~) or conversely. 

For instance, some criticisms of the JP approach are based on the belief 
that the set of  the questions is an or thocomplemented lattice in the JP 
theory, which is false. 

As another example, Mielinik's (1976) argument against the existence 
of an orthocomplementat ion on ~ is based on the belief that, for every 
a ~ 3? and a ~ ~ such that a ~ a, the equation a ' =  [ce~]_ holds in the JP 
approach,  which is also false [it would be true if the mapping ~ were an 
isomorphism; indeed, the equivalent equation ~ ( a ) ' =  ~ ( a  ~) would hold 
in this case], s 

As we anticipated in the introduction, we do not intend to recognize 
and discuss all criticisms to the JP theory in the present paper; we limit 
ourselves here to the challenge by Hadjisavvas et al. (1980, 1981; Thieffine, 
Sin par t icu lar ,  Mie ln ik  shows tha t  a s emi t r anspa ren t  mir ror  can be used  in order  to bu i ld  up  

a ques t ion  a o such tha t  O~o-a~.  Let us put  a o =  [ ao ]_  ; then,  the equa t ion  a ' =  [ a ~ ] _  leads  
to a0 = a6, which  cont rad ic t s  the s ta tement  tha t  ' is an o r thocomple rnen ta t ion  on 3?. Yet, this  
is not  an objec t ion  to the JP  theory  (Garola ,  1980) since the a foresa id  equa t ion  is wrong.  
Indeed ,  for ~ihy a,  /3 c ~ one has  a ~ /3  wheneve r  c~ is t rue iff /3 is true,  whi le  a ~ - / 3 "  
wheneve r  a is false iff/3 is false. Hence,  one may  have  a ~ / 3  whi le  a ~ ~ /3  ; does  not  hold ,  
i.e,, 

[&]~ = [ / 3 ] _  whi le  [ a ~ ] _  ~ [/3~]_ 



1326 Cattaneo et  al. 

1983), which will be positively solved in  the present paper by means of a 
suitable mathematical model in Section 6 endowed with a well-established 
physical interpretation. 

4. THE COMPLETELY FORMALIZED JP  SYNTACTIC SYSTEM 

4.1. As we anticipated in Section 3.1, the theoretical structure of any 
physical theory generally consists of (1) a mathematical structure and (2) 
an intended physical interpretation. 

Our analysis in Section 3 (especially Sections 3.1 and 3.2) shows, in 
particular, that a more rigorous presentation of the basis of the JP theory 
would be desirable such that (i) the mathematical structure of  the theory 
be clearly distinguished from its physical intended interpretation and from 
its possible mathematical models; (ii) all the axioms of the theory be plainly 
expressed and proved to be adequate for setting up the fundamental struc- 
tures of the theory; (iii) a relative coherence proof  be given. 

We intend to provide such a presentation in this paper. More 
specifically, the present section will be devoted to the mathematical structure 
of the JP theory. It should be noted that our task might be performed by 
describing semiformally this mathematical structure by means of the usual 
mathematical language and of the logical-deductive structure of the common 
language. Alternatively, and more rigorously, a suitable formal language 
might be constructed in order to describe the mathematical language and 
the logical-deductive structure of the theory. Of course, the latter procedure 
is far less intuitive and requires rather cumbersome logical tools; further- 
more, it leads to the construction of a conceptual instrument which is 
exceedingly powerful for our purposes. This notwithstanding, we will prefer 
it in the present section. 

Our choice needs some justification. With reference to (i) above, we 
observe that a formal approach automatically discriminates the mathemati- 
cal structure from its interpretation (in particular, the physical intended 
interpretation) and, within the former, the mathematical language from the 
logical-deductive structure expressed by means of the language itself; thus, 
it exemplifies a role that formal logic can play in the foundations of physics, 
it constitutes an interesting paradigm for further applications, and it illus- 
trates the high levels of logical complexity which are inherent even in the 
primitive concepts of a physical theory. 

With reference to (ii) above, we remark that a formal statement of any 
theory assures without further investigation that no unexplicit axiom is 
hidden within the ambiguities of the language (as could happen if the usual 
mathematical language were used). In our particular case, the axioms will 
result from our discussion in Section 3.2, i.e., they will be obtained by 
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expressing formally A3.1-A3.4 and Piron's  axioms C, P, A (we have already 
observed in Section 3.2 that  this set of  axioms turns out to be adequate) .  
Of  course, a full recognit ion o f  all the axioms support ing the theory,  while 
it is a necessary step for proving its coherence,  also is impor tant  for a better 
unders tanding of  the theory itself. 9 

With reference to (iii) above, we note that a completely adequate  formal  
presentat ion o f  any theory  obliges one to classify the symbols that are 
in t roduced according to types [in the sense o f  Whi tehead and Russell (1925)] 
and hence the well-formed formulas according to their orders. In our  case, 
this shows at once that  no p roo f  o f  absolute coherence of  the JP theory 
can be given, since the order  o f  the formal language which is required when 
formalizing the theory is greater than one (G6del) .  

On the other side, the formal presentat ion o f  all the specific axioms 
provides an unambiguous  background  for a p roo f  o f  relative coherence by 
means o f  a mathematical  model.  

We would  like to adjoin that the classification in types avoids any 
confusion between statements belonging to different language levels, l~ In 
our  case, it shows that axioms A3.1-A3.4 must  be distinguished f rom Piron's  
axioms C, P, A, since the former  are first-order wffs, while the latter are 
second-order  wffs. 

A further  a rgument  in favor  o f  a formal presentat ion o f  the theory may 
arise when considering that  many  objections against the JP approach  con- 
cern the in t roduct ion o f  an inverse in the set o f  the questions and of  an 
or thocomplementa t ion  in the complete lattice o f  the proposit ions.  Then,  a 
formal presentat ion o f  the JP theory shows that these operat ions are intro- 
duced at different language levels, and makes any confusion between them 
impossible (which may occur,  in part, because o f  some ambiguities in the 
natural  language by means o f  which the theory is usually discussed); 
moreover ,  it clearly exhibits the syntactical links between the operators ~ 
and ' 

4.2. Fol lowing on our  argument  in Section 4.1, we will now int roduce 
the mathemat ical  structure o f  the JP approach  to the foundat ions  o f  quan tum 

9We stress that A3.1-A3.4 and C, P, A must be classified as specific axioms which belong to 
the mathematical language of the theory; they must be sharply distinguished from the logical 
axioms of the logical deductive structure, which will not be reported here. We recall that the 
logical status of the former is different from the status of the latter; for, the latter hold under 
any interpretation, while the former select the subclass of the possible interpretations of the 
theory. We also recall that the set of the logical axioms is incomplete, since the order of our 
formal language is greater than one (G6del); hence, the whole set of all the axioms (both 
logical and specific) is necessarily incomplete. 

~~ will show in a forthcoming paper that the individual signs of type 0 in our formalized 
JP approach can be further interpreted as predicative signs of type 1 of an underlying 
physical language. 
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physics as a completely formalized syntactic system consisting of the following 
components. 

al. A noninterpreted formalized language, in which primitive signs, 
derived signs, terms constructed by means of these signs, and 
well-formed formulas (wffs) are introduced. 

a> A logical deductive structure (or calculus), in which some wffs of 
the formalized language are assumed as axioms, the set of the 
axioms being partitioned into the subset of the logical axioms and 
the subset of the specific (or extralogical) axioms, and some primitive 
inferential rules are introduced. 

The basic formalized language L of the JP syntactic system will consist of 
a part (since we make use of monadic predicative variables only and 
introduce ad hoc restrictions in the formation rules for wffs) of a predicate 
calculus of the second order with identity, embodying the simple theory of 
types with partition of the 0-type terms into two kinds. 

Following usual procedures, we shall construct L by giving an alphabet, 
i.e., a set of primitive signs classified according to syntactic categories and 
a (finite) set of formation rules (FR); this will be done by making use of a 
nonformalized metalanguage, consisting of a part of the English language 
together with some technical symbols, i.e., bold letters of the latin alphabet 
having the role of metalinguistic variables. 

Then, the alphabet of L consists of the following signs. 

Descriptive signs 
D1. Individual signs of type 0 and kind 5g: variables x, y, z; Xl, y~, 

z~; . . .  ; x,,  y~, z,; . . . .  
D2. Individual signs of type 0 and kind ~: variables a,/3, y; al , /3~,  

71; .. �9 ; aN, ft,, 7,; . . . .  
D3. Predicative signs of type 1: monadic variables if, ~g, lh; lfl ' lgl, 

l h l ;  . . .  ; if,, lg,,  lh, ; . . . .  
D4. Predicative signs of type 2: monadic variables 2f, 2g, 2h, 2f~, 2g~, 

2h l ; . . .  ; 2f,, 2 g n ,  2hn  ; . . . .  

Specific signs 
SI. Individual constant I of type 0 and kind ~. 
$2. One-argument functor L 
$3. Undetermined order functor [I. 
$4. Diadic predicative constant T of type 1. 

Logical signs 
L1. Signs of connectives 7 ,  ^, v,  -~, ~-+. 
L2. Signs of quantifiers 3, V. 
L3. The identity sign --. 
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Auxiliary signs 
AS. C o m m a  and round  parentheses. 

The terms and the wffs o f  the language L are constructed by means of  
the fol lowing format ion rules (FR) 

FR for terms 
T1. Every individual variable o f  type 0 and kind 5f or kind ~ is a term 

of  the same type and kind. 
T2. The constant  I is a term of  type 0 and kind ~. 
T3. I f  ~ is a term of  type 0 and kind ~, then oL ~ is a term of  type 0 

and kind ~. 
T4. I f  f is a predicative (monadic)  variable o f  type 1, then [[r (read: 

the produc t  o f  all the a ' s  that  are f) is a term of  type 0 and kind 

We recall that  a term where no free (i.e., not  quantified) variable occurs is 
usually said to be a closed term, or designator; otherwise, it is said an open 
term (or descriptive function); in the present language there exists one closed 
primitive term only, the constant  L 

FR for wffs 
W1. For  every term x o f  type 0 and kind O ~ and term t of  type 0 and 

kind ~, T(x, t) is a wff. 
W2. I f  f is a predicative variable, either o f  type 1 or o f  type 2, and t 

either is a term of  type 0, kind ~ or  a predicative variable o f  type 
1 respectively, then f(t) is a wit. 

W3. I f  s, t are terms of  the same type and kind, then s = t is a wff. 
W4. I f  A, B are wffs, then -TA, A ^ B ,  A v B ,  A->B,  and A~-~B are wffs. 
W5. I f  A is a wff, t an individual variable (of  kind 5e or ~) ,  or  a 

predicative variable o f  type 1, which occurs free in A, then (3t)A,  
(Vt)A are wffs. 

A wff o f  L where no free variable occurs will be called a closed wff, or 
sentence; otherwise, it will be  called an open wff, or  sentential funct ion (the 
FR  for wff associate, in particular,  a tomic open wffs to every predicative 
variable or  primitive predicate,  and allow the introduct ion o f  derived predi- 
cates which are associated to molecular  a n d / o r  general open wffs). 

Furthermore,  a (closed or open)  wff or L will be called a first-order 
wff iff neither predicative variables o f  type 2 nor  quantified predicative 
variables occur  in it; otherwise, it will be called a second-order wff [thus, 
if(a), T(x, a), (Va) lf(a), (30:) if(a), etc., are first-order wffs, while 2f(lf), 
(V ' f )  2f( lf) ,  (3 ' f )  2f( , f ) ,  (3 ' f ) ( l f ( a ) ) ,  (V ' f ) ( ' f ( ~ ) ) ,  etc. are second-order  
wits]. 

Our  language L is thus constructed. 
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Now, we proceed to extend L in order to obtain a minimal class 
language Le based on L, with the aid of  the following signs. 

Descriptive signs 
D5. Class signs of  type 1 and kind 2:  variables a, b, c; al ,  bl, c l ; . . .  ; 

an, bn, c,; . . . .  

Abstraction signs 
A1. {...}. 
A2. The class abstraction operator { �9 I...}- 

Logical sign 
L4. The 6 operator. 

By means of these signs, the following FR for class terms of kind ~ are 
introduced. 

T5. Every class variable (necessarily of  type 1, kind ~ )  is a class term 
of type 1, kind 2. 

T6. I f  t l , . . . ,  t ,  either are terms of type 0, kind 2, then { h , - . . ,  t,} is 
a finite class term of type 1 or 2, respectively, kind 2. 

T7. I f  A(s) is a wff, s either is an individual or a class variable of  kind 
which occurs free in it, then {s]A(s)} is a class term of type 1 or 

2, respectively, kind 2. 

The substitutivity field of  the class variables is given by the set of  all the 
class terms of type 1 constructed by means of T6 and T7. 

Moreover, we give the following further FR for wffs. 

W6. I f  s, t are class terms of the same type, then s = t is a wff. 
W7. I f  t is a class term, either of  type 1 or of  type 2, and s either is a 

term of type 0, kind 2, or a class term of type 1 respectively, then 
s e t  i s  a wff .  

W8. I f  A is a wff, t a class variable which occurs free in A, then (3t)A 
and (Vt)A are wffs. 

Then, we denote by Le the language whose alphabet consists of  the descrip- 
tive signs D1-D5,  of  the specific signs S1-$4, of  the logical signs L1-L4, 
of  the abstraction signs A1 and A2, of the auxiliary signs AS, whose terms 
are constructed by means of the FR T1-T7, and whose wffs are constructed 
by means of the FR WI-W8.  

The above definitions of  closed and open terms and wffs, and of 
first-order and second-order wffs, suitably completed by introducing class 
variables, are maintained in Le. Furthermore, we assume that all the usual 
logical axioms and the inference rules of the classical second-order predicate 
calculus including class logic hold in Le. 
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The following identities and equivalences, which can be in t roduced 
following s tandard procedures  (Whitehead and Russell, 1925) allow the 
reduct ion o f  wffs o f  the enlarged language Le into wffs of  L. 

R1. I f  t is a class term, either of  type 1 or o f  type 2, and r either is an 
individual variable o f  kind ~ or a class variable respectively, then 
the sentential funct ion r ~ t is determining, i.e., such that  

t = { r l r c t }  

Furthermore,  let s be a term of  kind ~ and type 0 if t is o f  type 
1, type 1 if t is o f  type 2. Whenever  t = {tl, �9 �9 �9 t,}, i.e., t is a finite 
class term, then 

s ~ t o ( ( s = t l )  v . . . v  ( s : t . ) )  

Whenever  t = {r[A(r)), with r a variable A(r) a wff of  Le, then 

s ~ t <--~ A(s) 

R2. I f  s and t are class terms, either of  type 1 or o f  type 2, and r either 
is an individual variable of  kind ~ or a class variable respectively, 

then 

s = t <-> (Vr)((r c s) <-> (r c t)) 

R3. For  every class term t of  type 1 of  Le (hence t={oLIoL~t}), a 
primitive derived predicate g exists such that 

t = {otlg(ot)} 

(hence, for every term s of  type 0, kind 2, s c t <--> g(s)). In particular, 
for any class variable a, a = {oLIf(t~)}, with f a free predicative 
variable of  type 1. 

R4. For  every class term t o f  type 2 o f  Le, a second-o~'der sentential 
funct ion A(f) that  belongs to L exists, with f a free predicative 
variable of  type 1, such that, for any class term s = {etlg(~t)} of  type 1 

s~ t<->A(g) 

The rule R1 states that  every class term can be constructed by means o f  a 
sentential funct ion o f  Le, furthermore,  because o f  R3, R~, every wff o f  Le 
can be translated into a wff o f  L; hence, the wffs o f  the enlarged language 
Le can be reduced into wffs o f  L. Thus, our  extension of  L into Le is not  
logically needed,  even if it greatly simplifies our  treatment. 

Finally, we convene that  in the term 

II 
f 

the predicate f may  be substituted by the 1-type class term t = {a]f(~t)} 
(hence by a class variable). 
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Then we call formal ized question preparation structure, or fqps for short, 
the calculus constructed in Le by adjoining to the logical axioms, as specific 
axioms, the following (closed) wits. 

Ax iom 1. (Vx)T(x,  I) .  

Ax iom  2. (Va)(a"~ = a) .  

Ax iom 4. ( V a ) ( V x ) ( - 7 (  T(x ,  o~) A T(x ,  a") ) ) .  

In any fqps we define the derived signs <,  - ,  [ �9 ]_, 2T, 3?, < by means 
of the following (open) definitions, respectively. 

D4.1. a < fl ~ (Vx)(T(x,  a)  ~ T(x ,  fl)).  
D4.2. a -- fl ~-> ( c~ < /3 ) A (fl < cQ. 
D4.3. [a]_={ f l l f l - - c~} .  
D4.4. 2T(x, a)~->(Va)((a �9 a)-~ T(x ,  a)) .  
D4.5. 37 = {al(3o~)(a = [a]_)}. 
D4.6. a < b~(Vx)(2T(x, a)-,2T(x, b)). 

By making use of classical inference rules and axioms together with the 
above definitions, one can formally prove the following statements. 

P4.1. (i) (Va)(o~ < a) .  
(ii) (V~)(Vfl)(Vy)(((a  < fl) A (/3 < Y)) -~ (a < y)). 

P4.2. (i) (Va) (a  ~ a) .  
(ii) (V~)(V/3)((a --/3)~-~(/3 -- o0). 

(iii) ( V a ) ( V / 3 ) ( V y ) ( ( ( a  - / 3 )  A (/3 ~ y ) ) ~  (a  ~ y)) .  
P4.3. (i) (Va)(a < a). 

(ii) ( V a ) ( V b ) ( ( ( a  < b) A (b < a))~-~(a = b)). 
(iii) ( V a ) ( V b ) ( V c ) ( ( ( a  < b) A (b < c)) ~ (a < c)). 

Furthermore, the fundamental theorem for fqps holds (Piron, 1976a), the 
formal proof  of which is reported in the Appendix. 

Theorem 4.1: 
(i) ( V a ) ( 3 b ) ( ( b  �9 3?) A ( ( V a ) ( ( a  �9 a) --> (b < [a ]_) ) )  

A ((Vc)(( (c  �9 3?) A ( ( W ) ( ( ~  �9 a ) -~  (c < [ ~ ] _ ) ) ) ) - ,  (c < b)))) .  
(ii) ( V a ) ( 3 b ) ( ( b  �9 3?) A ( (Va)( (a  e a) ~ ( [a ]_  < b))) 

A ((VC)(((C e 3?) A ( (Va) ( (a  �9 a) --> ( [a ]_  < c)))) -> (b < c)))). 

We intend now to define a stronger structure. With this aim in mind we 
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in t roduce the fol lowing fur ther  definitions: 

D4.7. (i) (a~b~-c )~- -~ ( (a~SF)A(b~S~)A(C~)  
^ ((Vx)(2T(x, c)~-~(2T(x, a)  A 2T(x, b))))) .  

(ii) ( a w b = c ) ~ - - ~ ( ( a ~ ' ) A ( b ~ ) A ( C ~ )  

A ((Vx)(2T(x, c)~-~'(2T(x, a)  v 2T(x, b))))) .  

D4.8 .  O = I~. 

D4.9. (1 = [ I ] _ )  A (0 = [O]~) .  
D4.10. ( b e { a ' } ) ~ ( ( a ~ Z e ) A ( b ~ Z P ) A ( ( 3 a ) ( ( a ~ a ) A ( o ~ " ~ b ) ) )  

A ( ( a n  b) = 0) A ( (a  u b) = 1)). 

D4.11. (i) ( b C C a ) * - > ( ( ( a c S f ) A ( b ~ ) A ( ~ ( a = b ) ) ^ ( a < b )  
A ((VC)((C ~ ~ )  A (a < c) 
A (C < b))))  ~ ((c = a)  v (c = b)))  

(ii) a ~ s g ~ a ~ O  

Then,  we call JP  formalized question-preparation structure, or JP fqps,  the 
calculus const ructed in Le by selecting axioms 1-4 together  with the follow- 
ing wffs. 

Axiom C. (Va)(a e 5f) ~ ((3b)(b e {a'})). 

Axiom P. (Va)(Vb)((a < b)*-->((Vc)(Vd)(((cc{a'}) A (d ~ {b'})) 
--> (d < c)))).  

Axiom A. 
A~. (Va ) ( ( (aeSE)A(~ (a=O)) ) ->( (3b ) ( (be~ l )A (b<a) ) ) ) .  
A2. ( V a ) ( V b ) ( ( ( a c ~ ) A ( b ~ ) A ( ( a c ~ b ) = O ) ) - - > ( ( a u b ) C g a ) ) .  

Coherent ly  with our  definitions at the beginning of  the present  section, 
we call completely formalized JP syntactic system the pair  made  up by the 
language Le and the JP fqps. 

Finally, by making  use o f  classical inference rules and  axioms together  
with the above  axioms C and P and definitions D3.8-D3.11,  one can formal ly  
prove  the fol lowing basic  s ta tements  for  JP fqps. 

P4.4. ( Orthocomplementation ) 
(Va)(Vb)(Vc)(((b c {a'}) A (C ~ {a'})) --> (b = c)). 
(Va)(Vb)(Vc)(((b e {a'}) A (c e {b'})) ~ (c = a)) .  
(Va)(Vb)((b c {a'}) --> ( ( ( a n  b) = 0) A ((a  w b) -- 1))). 

P4.5. ( Weak modularity) 
(Va)(Vb)(Vc)(((a e ~ )  A (b e s A (a < b) 

A (C e {b'}) ^ (d = (a  u c))) ~ ((b n d)  = a)) .  

4.3. N o w  we make  some technical  commen t s  on our  formal iza t ion  
above,  main ly  concerning our  language Le. 

First, we observe that  some general  language exists in classical logic, 
i.e., p redica te  logic of  higher  order  with identi ty embody ing  the (s imple)  
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theory of types and a partition of the 0-type terms in kinds (Carnap, 1958), 
which could have been used in order to formalize the JP theory. Our language 
Le here is an ad hoc language, which has been endowed with only those 
tools required for our limited purposes (of course, the formalization of the 
whole mathematical structure of the JP theory lies beyond the aims of the 
present paper; for, it would require a number of further definitions and 
cumbersome formal proofs, while it would not improve our understanding 
of the basic concepts), favoring manageability and immediate interpretabil- 
ity at the expense of generality and elegance. As a consequence of this 
choice, the number of symbols that have been introduced in Le is not 
minimal at all. For instance, all the usual signs of logical connectives have 
been inserted in the alphabet, while they could be interdefined. Analogously, 
D4.3 and D4.5 have been respectively chosen in place of the equivalent 
(because of R1-R4) definitions 

D4.3'. ~ ~ [ ce ]_*-~ C3 - ce 
D4.5'. (a e ~ )  *-~ (3a)((V/3)((/3 e a) ~--~ (/3 ~ [ce]_))) 

which would have dispensed with the class abstraction operator and the 
identity sign. 

Second, let us recall that we have shown in Section 3.3 that an explicit 
introduction of some new predicates (false, indeterminate) and concepts 
(preparation, repeated measurements) would have clarified (even from an 
epistemological point of view) the basic notions of the JP approach. Then, 
we remark that the language Le may be further enlarged by introducing 
two derived predicates F and U by means of the following (open) 
definitions. 

F(x, ~ ) ~  T(x, ,~"). 
U(x, o~)~(-~(T(x,  ,~) v F(x,  5))).  

By making use of F, the Axioms 3 and 4 in Sections 4.2 can be respectively 
restated as follows. 

Axiom 4'. (Vo~)(Vx)(~(T(x ,  4)  ^ F(x,  o~))). 

Third, we notice that Le formalizes the language used by Piron when 
talking about questions and propositions; hence, in some sense, it could be 
said to be a metalanguage with respect to the language of the physical 
properties, which correspond to the propositions. In this metalanguage, two 
levels can be distinguished (not to be confused with the levels of description 
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introduced in Section 3.3), the first regarding questions, the second one 
classes of questions (in particular, propositions). When formalizing, the 
second level must be reached right from the beginning in order to define 
properly Piron's functor l-I, whose order, according to Piron, may be infinite. 
Yet, Piron's definition of I] introduces an unphysical element in the theory 
that one could prefer to avoid, defining I] only for a finite (though indeter- 
minate in number) sequences of questions. 

Thus, a language Lw weaker than Le can be introduced by substituting 
T4 for terms with the following statement. 

T4'. I f t  is a finite class term of type 1 (hence of kind ~),  then (It is a 
term of type 0 and kind ~. 

Let us call weak formalized question proposition structure, or wfqps, the 
calculus constructed inLw by selecting the axioms 1, 2, 4 above together 
with the weaker form of axiom 3 obtained by restricting a in I]a to be a 
finite class term, or equivalently, 

Axiom 3~. 

{Ot l , . . . ,  C~n 

Axiom 3~ might be easily formulated without making use of the class 
theory and second-order predicate logic; hence, all the fundamental axioms 
of a wfqps can be formulated by making use of the first-order predicate 
logic only. 

Yet, it must be noted that in Lw it is impossible to prove that the 
partially ordered set of the propositions is a lattice. More specifically, even 
if the statements (i) and (ii) in Theorem 4.1 are substituted by the weaker 
statements 

(i ') (Vb)(Vc)( ( (b ~ 58) ^ (c ~ ~ ) )  

-~ ((=Jd)((d ~ )  A ((Vx)(2T(x,  d)<-->(2T(x, b) ^ 2T(x, c))))))) 

(ii') (Vb)(Vc) ( ( (b  e 58) A (C ~ 58)) 

--> ( ( 3 d ) ( ( d  ~ 5g) A ((Vx)(2T(x,  d) ~ (2 T(x, b) v 2T(x, c))))))) 

which hold in Le whenever the class term a is bound to coincide with a 
two-element (hence finite) class term {/3, y}, the statement (ii') cannot be 
proved in Lw, since its proof  requires full use of  axiom 3 in its original form. 

Finally, we stress that the wff (~ --fl),~-> (o~ ~ - - f l ' )  is not a theorem in 
the fqps; hence, neither ( [ a ]_  = [/3]_)<--> ([c~']_ = [/3~]_) is a theorem. This 
suffices to invalidate the basic assumptions of some criticism to Piron's 
approach (Mielnik, 1976) that we have already discussed in Section 3. 
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5. THE PHYSICAL INTENDED INTERPRETATION 
OF THE COMPLETELY FORMALIZED 
JP  SYNTACTIC SYSTEM 

The completely formalized JP syntactic system introduced in Section 
4.2 will be endowed of an intended physical interpretation by means of the 
following interpretation rules. 

1. Every individual variable of kind b ~ ranges over the set of the 
preparation procedures (which we denote again by ~, by abuse of 
language), implicitly introduced in PR2.1. 

2. Every individual variable of kind ~ ranges over the set of the 
questions (which we denote again by ~, by abuse of language), 
defined according to PD2.1. 

3. Every predicative monadic variable (of type 1 or 2) ranges over a 
set of physical properties (of type 1 or 2) of the questions (it must 
be clearly understood that these properties of the questions must 
not  be confused with the properties of the physical system intro- 
duced in D2.4). 

4. The individual constant I is associated to the trivial question, 
defined according to PD2.2. 

5. The functorial sign ~ is associated to the mapping 

a ~ being the inverse of a, defined according to PD2.3. 
6. The functorial sign 11 is associated to the mapping 

a i 

where {ai} is any family of questions, ~ ( ~ )  is the power set of ~, 
and lV[~ ai is defined according to PD2.4. 

7. The diadic predicate T is associated to the " t rue" predicate, defined 
according to PR2.1. 

8. The signs -% A, V, -->, <-->, 3, V, = are intrepreted according to the 
usual logical conventions. 

Then, the following further interpretation rules will be given for the new 
signs introduced in Le. 

9. Every class variable ranges over ~ ( ~ ) .  
10. The signs {...}, {. [...}, ~ are interpreted according to the usual 

conventions in class theory [hence, every class term of type m is 
interpreted over ~ " ( ~ ) ] .  

Finally, the following derived interpretation rule applies to the predicates 
introduced in Section 4.3. 
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11. The auxiliary predicates F and U are associated to the "false" 
and "indeterminate" predicates, defined according to PR3.1 and 
PR3.2, respectively. 

According to the above interpretation rules, the axioms 1-4 in Section 4.2 
formally state A3.1-A3.4 in Section 3.2. The equivalent forms 3' and 4' of  
the axioms 3 and 4 given in Section 4.3 respectively formalize A3.3' and 
A3.4' in Section 3.3. 

Then, the definitions D4.1-D4.6 respectively formalize JP definitions 
D2.1-D2.6. Furthermore, the propositions P4.1-P4.3 show that <, - ,  and 
< can respectively be considered a quasiorder relation on the set of the 
questions, an equivalence relation on the same set, and a partial order 
relation on the set ~ = ~ / _  of the propositions. 

Theorem 4.1 formally states the fundamental Theorem 2.1 of the JP 
theory [ the statements (i') and (ii') of  Section 4.3 being equivalent to the 
statement that the poset ~ of  the propositions is a lattice]. The definitions 
D4.7, D4.10, and D4.11 formally introduce the symbols c~ and w in ~,  
the "compatible complement" in the sense of Piron, a "covering" relation 
in Le, and the concept of "atom,"  respectively. Then, axioms C and A 
formalize the axioms bearing the same name in Piron (1976a), while axiom 
P here formalizes a statement which is equivalent to axiom P in the Piron 
approach (whose formal statement would have been rather cumbersome). 
Finally, P4.4 and P4.5 formalize well-known basic properties of the lattice 
5r following from axioms C, P. 

6. THE (RELATIVE) COHERENCE OF THE JP  APPROACH 

6.1. We have seen in Section 3.2 and 4.2 that the JP theory does not 
stand upon Piron's axioms C, P, A only, but also upon axioms A3.1-A3.4. 
Thus, a coherence problem arises for the whole set of axioms, which is not 
solved by the existence of a physical model, like that in Section 5, nor by 
a formalized presentation of the mathematical structure of the theory, like 
the one proposed in Section 4.2, though the latter provides a suitable 
background for the discussion of the problem. 

We have already observed in Section 4.1 that only relative, not absolute 
coherence can be proved, because of  the G6del theorems; thus, all that can 
be done is to show that the theory is coherent if mathematics is such. As 
usual, this may be proved by means of a suitable mathematical model where 
all the primitive symbols and operators of the theory are suitably represen- 
ted, and all the axioms are logically true. Now, there exist models of the 
JP theory in the literature which can be easily adapted to our present 
framework in order to attain a (relative) coherence proof; in particular, the 
infinitary model exhibited in Hadjisavvas et al. (1980) and a finitary model 
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displayed in Foulis and Randall (1984). 11 Yet, we would like to accept a 
challenge issued in Hadjisavvas et aL (1980) [and renewed in Hadjisavvas 
and Thieffine (1984)]; thus, we will prove in the next subsection the coher- 
ence of  the axioms A3.1-A3.4 and C, P, A by means of a model which, 
besides being formally adequate, is such that every basic mathematical  
object and relation in it can be physically interpreted. 

In order to achieve a better understanding of this point, let us recall 
that a physical question corresponds to a measuring apparatus (see Section 
2) but not generally to an observable according to the usual QP meaning 
[i.e., in the sense formalized, e.g., by Mackey (1963)]. 

Whenever a question a satisfies some probability requirements (Garola, 
1985) it belongs to some suitable equivalence class of  questions, or effect, 
which, according to a recent approach to QP (e.g., Ludwig, 1983; Garola  
and Solombrino, 1983), can be represented by means of a linear, bounded,  
self-adjoint operator a on a Hilbert space, such that 0 -  < a-< 1 (the states 
being represented, as usual, by suitable trace class operators). 

Hence, this representation yields a many-to-one representation of ques- 
tions onto suitable operators which is embodied in our mathematical  model; 
indeed, according to the latter, every variable of Le which is bound to range 
over questions in the physical intended interpretation is made to range over 
operators representing questions, according to the aforesaid representation, 
in our model. It must be stressed that the spectral values of  the representative 
operators must not be interpreted as possible outcomes of measurements 
of  the corresponding questions, but as probabilities of  the yes outcome 
(Garola and Solombrino, 1983); therefore, a question must not be Qonfused 
with the observable represented by the same operator according to the usual 
Hilbert representation. We also remark that every variable of  Le which is 
bound to range over states in the physical intended interpretation is made 
to range over operators representing pure states (according to the aforesaid 
representation) in our model. 

Thus, our model is endowed with a well-defined physical meaning. 

6.2. Let ~ be a Hilbert space. We denote by ~ ( ~ )  the set of  all the 
linear, bounded,  self-adjoint operators a on ~ such that 0-< a -< 1, and by 
~ ( ~ )  c_ ~ ( ~ )  the set of  all the (orthogonal) projection operators on ~.  
Furthermore, we denote by o the composition of mappings,  and for every 

l lWe emphasize that our aim cannot be reached by means of the Hilbert realization discussed 
in Piron (1976a), which is an alternative formulation of the usual Hilbert space model of 
QM. Indeed, the latter provides a mathematical representation of derived symbols (proposi- 
tions) and operations (orthocomplementation, join, meet) only, and does not prove the 
(relative) coherence of the whole set of the axioms of the JP theory, which also contains 
the axioms that Piron did not make explicit, and axiom C involving both questions and 
propositions. 
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a c ~-(~) we call E~ the resolution of the identity that belongs to a ;  finally, 
for every trace class operator p we denote by Tr[p] the trace of p. 

Then, we assume that the following correspondence rules hold. 

1. Every individual variable of kind 5 ~ ranges over the subset 5r _ 
~ ( ~ )  of  all the projections over one-dimensional subspaces of g.  

2. Every individual variable of kind ~ ranges over ~ ( ~ ) .  
3. Every predicative monadic variable (of type 1 or 2) ranges over a 

set of mathematical properties (of type 1 or 2) of the operators in 
~ ( ~ ) .  

4. The individual constant I denotes the identity operator on ~. 
5. The functorial sign ~ denotes the mapping 

6. The functorial sign 1~ denotes the mapping 

17: acp(o~(~))~ =!Vf Eo({1})+ E~({0}) ~ ( ~ )  
a 2 

[equivalently 

{ai} being any family of  operators of ~ ( ~ ) ]  with ~ ( ~ - ( ~ ) )  the 
power set of ~ ( ~ )  and ~ . ~ .  the usual meet in the lattice of all 
the (orthogonal) projection operators on ~ [we recall that the 
greatest lower bound P ~  Q of two projections P and Q is the 
projection onto the intersection of their ranges, while the least 
upper bound P w Q is the projection onto the closure of the sum 
of  their ranges; furthermore we explicitly note that generally [I .  
is not a projection, even when a c_ ~ (~ ) ] .  

7. The diadic predicate T denotes the (mathematical) property "the 
trace is 1"; more precisely, for every x ~ 5v(~), a ~ W*(~), 

T(x,a) iff T r [ x o a ] = l  

(equivalently, Tr[x o E~({1})] = 1). 
8. The signs ~,  ^ ,  v,  ~ ,  ~--~, 3, V, = ,  comma, and round parentheses 

are interpreted according to the usual logical conventions. 

Then, let the following further correspondence rules hold for the new signs 
introduced in the extended language L~. 

9. Every class variable ranges over ~ ( ~ ( W ) ) .  
10. The signs {...}, { �9 [ . . .},  and ~ are interpreted according to the 

usual conventions in class theory (hence, every class term of type 
m is interpreted over ~m(,~(~))).  
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Finally, the following correspondence  rule applies to the predicates intro- 
duced in Section 4.3. 

11. The auxiliary predicates F and U denote  the (mathematical)  
properties " the  trace is 0" and " the trace is more than 0 and less 
than 1", respectively; more  precisely, for every x ~ S~ o~ ~ ~(Y(),  

F(x,a) iff T r [ x o a ] = 0  

U(x, oQ iff 0 < T r [ x o a ] < l  

According to the above rules of  correspondence,  axioms 1-4 in Section 4.2 
formally state the fol lowing mathematical  proposi t ions (whose p roo f  is 
straightforward).  

P6.1. Let x c D~ then Tr[x o I ]  ~ 1. 
P6.2. For  every a ~ ~(Y(),  a ~ = a. 
P6.3. Let x E 5e(Y(), a 6 ~ ( ~ ( Y ( ) ) ;  then, 

Tr[x o ~]  = 1 for every a ~ a 

ill Tr x o (-~ E . ( { 1 } ) +  E . ( { 0 } )  = 1 
c t ~ a  

Tr[x  o ~]  = 0  for every a c a 

itt Tr[xo(~,~qE,({1})+~([-~oE~({O}))~)]=O 

P6.4. Let x 6 5e(Y(); then the properties Tr[x  o a ]  -- 1 and Tr[x o a ~] = 1 
are mutual ly exclusive. 

Furthermore,  the definitions D4.1-D4.6 in Section 4.2 can be translated 
into the fol lowing definitions respectively. 

D6.1. a < / 3  iff E~({1})<E~({1}).  
D6.2. a - / 3  iff E~({1})=E~({1}).  
D6.3. [ t i ]_  = {/3IE~({1}) = E~({1})}. 
D6.4. 2T(x, a) iff Tr[x o a ]  = 1 for every a ~ a. 
D6.5. ~ ( ~ )  = { a l a  = [ a ] _  for some a ~ ~-(Y()}. 
D6.6. a < b ill E~({1})< E~({1}) for every a c a, /3 ~ b. 

Trivially, < denotes a quasiorder  relation (which does not  coincide with 
the usual ordering) on o%(Yf), ~ an equivalence relation on the same set, 
and < an order  relation on s  

In  Section 4.2, Theorem 4.1 formally states that (~G(Yg), < ) is a complete  
lattice. In  our  present model ,  the same result can be obtained by observing 
that the mapp ing  

qS: a =[a ]~Lf(Y()~- - )E ,~({1})~  ~(Y() 
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is well defined, and is an order isomorphism of  ( ~ ( ~ ) ,  < ) onto the complete 
lattice ( ~ ( ~ ) ,  <)  [it must be noted that the restriction to ~ ( g )  of  the 
quasiorder < defined on o~(~) is a partial order relation which coincides 
with the usual ordering on g ' (~) ] .  

Then, D4.7-D4.11 can be translated into the following definitions 
respectively. 

D6.7. Le ta ,  b c ~ ( ~ ) , a c a , / 3 ~ b ; t h e n  n and u denote meet and 
join in Sg(~g), respectively [hence, if we also denote by ~ and 
w the meet and join in ~ ( ~ ) ,  respectively, then a n b  = 
O-l(qS(a) n ~b(b)) and aub=d)- l (~) (a)u~b(b))] .  

D6.8. We denote by O the null operator. 
D6.9. We denote by 1 and 0, respectively, the equivalence classes of  

I and O with respect to - .  
D6.10. Let a 6 ~ (W) .  Then, b6{a'} iff b c S~(~g), b ~ a  =0,  b w a  =1,  

and an a ~ o~(~) exists such that o~c a and a ~ c  b [hence, 
b6{a'} iff b ~ ( ~ )  and ~b(b) = ~ - ~ b ( a ) ] .  

D6.11. Let a, b ~ ( W ) ,  a<b,  a~b .  Then we say that b covers a iff 
a < c < b implies either c = a or c = b [hence, b covers a iff a 
one-dimensional orthogonal projection operator E on ~ exists 
such that qS (a ) c~E=0  and 4)(a)wE=d)(b)] .  We say that 
a c ~(~g) is an atom iff a covers 0 (hence, iff a = [E ]_ ,  with 
E a projection operator on ~ whose rang e is one-dimensional). 

Furthermore, the following propositions can easily be proved, and immedi- 
ately imply that the statements corresponding to axioms C, P, and A of 
Section 4.2 hold in our model. 

P6.5. For every a ~ ~ ( ~ ) ,  

b = {/3 ~ ~ ( ~ ) I E r  ({ll) = ~ - E~({1})I ~ {a'} 

P6.6. For every a, b c ~ ( N ) ,  ~b(a) < qS(b) if[ ~ - ~b(b) < ~ - 4 ( a )  [hence, 
for every a e &#(~), {a'} is a singleton, i.e., {a'}--{b}, with b 
defined as in P6.5]. 

P6.7. (i) For every a ~ ~ ( ~ ) ,  a r 0, a projection operator E whose 
range is one-dimensional exists such that E < 05(a). 
(ii) Let a ~ Z#(2(), and let E be a projection operator on ~,  
whose range is one-dimensional,  such that d~(a)c~E =0;  then, 
a u [E]~ covers a. 

Finally, we recall that in Section 4.2, axioms C, P, and A are followed by 
P4.4, P4.5, which formally state that the lattice (&a(~), <)  is orthocomple- 
mented and weakly modular.  These properties of  ( ~ ( N ) ,  < )  trivially hold 
in our present model because of the aforesaid (order) isomorphism between 
(~( )~) ,  < )  and ( ~ ( ~ ) ,  <) .  
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6.3. We would like to close the present section with a brief discussion 
of some peculiar features of the JP structures (see Section 3.4) which have 
not been understood, or which have been believed "pathological," by some 
of Piron's opponents, and which are clearly illustrated by our model above. 

In particular, let us recall the following statements by Hadjisavvas et al. 

(1980), which hold (suitably formalized) in the fqps. 

(i) 

(ii) 

For any a e 5f\{~} there exists some question a c a such that 

[ ,~1~ a'. 
Let a~, /3~ ~ ~, a, b ~ 5f, and a~ ~ a, /~ ~ b, with a ~ b. Then, the 
compatible complement of a n b contains none of the negations 
(ai [[/3~) ~ of the questions ai I-[/3~ by help of which the proposition 
a n b can be defined. 

In the framework of our mathematical model these statements can easily 
be proved to hold. Indeed, let us consider (i). Whenever a ~ E~({1}), the 
"compatible complement" b = {/3 ~ ~(W)[E~ ({1}) = ~ - E~({1})} of a = [a]~ 
(see D6.10 and P6.5) does not contain a ~, i.e., b ~ [a  ~]_ (yet, [ a ]_  contains 
E~({1}), which is such that b = [E~({1})~]_). 

Let us now consider (ii). It is apparent from rule 6 in Section 6.2 that 
a,[I/3i never is a projection. Hence, a n b = [a,[I/3~]_ by definition, but 

( a n  b ) '=  [E,,[[~,({1})~]_ ~ [(aiI-[/3,)~]_ 

If we recall the physical meaning of our model discussed in Section 6, we 
see that (i) and (ii) follow from the existence of questions which are not 
observables in the usual QP meaning (indeed, only the questions which are 
represented by orthogonal projections are observables); in particular, ai I]/3i 
is not such an observable even if ai and/3i are. 

Thus, the pathological character of (i) and (ii) disappears. The deep 
roots of the belief that (i) and (ii) are undesirable results lie perhaps in the 
fact that it has not been sufficiently realized that Piron's rather sophisticated 
machinery (definition of compatible complement and axioms C, P) is built 
up so that (1) the subclass ac ~ a of the questions ac E a such that [a~]_ 
is a complement of a is nonvoid, and (2) for every ac,/3c ~ ac, [a~]_ -- [/3 ~]_. 
For, Piron seems well aware (at least in his later papers) that ac does not 
generally coincide with a, nor does the equation [ ~ ] _  = [fl~]_ hold for 
every a, /3 ~ a. 

Thus, statement (ii) above can be restated by saying that the product 
question a I1/3 of two questions a, /3 does not belong to the subclass 
([a I] /3]-)~ of the proposition [a  11/3]-, if a ~ ([a]~)~ or /3 ~ ([/3]]_)~; 
therefore, the equation [a  11/3]" = [(a  11/3)~]- (equivalently ([~]~ n 
[/3]_)' = [ (a  I]/3)~]=) does not hold. 
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It is undoubtedly true, however, that Piron does not give any physical 
prescription in order to distinguish the elements of the subclass ac from 
the other elements of the proposition a. We have already discussed this 
subject (Cattaneo and Nistic6, 1986; Garola, 1980, 1985; Garola and 
Solombrino, 1983; Cattaneo et al., 1986), and we will not repeat the details 
here. We only recall that, under suitable additional assumptions, the subclass 
ac can be identified with the subclass of all the elements ac ~ a such that 
their "certainly no domain" (i.e., the set of  the preparations, which make 
ac false) is maximum in a, so that the rule for constructing the compatible 
complement a'  of  any proposition a is as follows: consider all the questions 
in a, choose a question ac ~ a such that its "certainly no domain" is 
maximum in a, take its inverse question a~,  and consider the proposition 
[a~]_; this will be the compatible complement of a. 

APPENDIX 

With reference to Section 4.2, we exhibit here a formal proof  of 
Theorem 4.1; more precisely, of statement (i) in this theorem, since the 
proof  of (ii) can be easily carried out along similar lines. 

Then, the following statement must be proved: 

( V a ) ( 3 b ) ( ( b  ~ ~ )  ^ ((Vol)((a e a) --> (b < [a ]_) ) )  

A ((Vc)(((c ~ ~ )  A ( (Va) ( (a  ~ a) --> (c < [a]~))) )  ~ (c < b)))) 

A1. Prel iminary Remarks  

(a) In every step of the proof  some inferential rules are used, which 
we quote by means of  suitable labels as follows (for sake of brevity, we 
make use both of primitive and derived inferential rules). 

LT logical theorem (more precisely, a valid wff obtained from a logical 
theorem by substituting every occurrence of a variable with a term 
which belongs to the same syntactic category of the variable) 

EG existential generalization 
MP modus ponens 
Simp simplification rule 
Con conjunction rule 
Trans transitivity rule 
Repl replacement rule 

Since the replacement rule depends on the condition that the replacing 
expression be equivalent (or logically equivalent) to the replaced expression, 
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the label Repl will be followed, when needed, by a further label indicating 
the kind of the logical equivalence, according to the following list. 

Exp. exportation 
Comm. commutativity 
Bic. biconditional 
QD quantifier displacement 

(b) The inferential steps have often been shortened by omitting some 
steps or by simultaneously applying two or more inferential rules. Thus, 
we directly transform quantified wffs whenever no misunderstanding arises, 
and the EG is applied to universally quantified wffs without a previous 
application of the universal instantation rule. 

(c) Some inferential steps in the proof depend on a validity notion 
which is relative to any nonempty universe, not necessarily to any universe 
whatsoever; for, as far as applied logic is concerned, a validity breakdown 
which occurs in the only case of an empty universe is irrelevant. 

A2. The Proof 

(1) 
/ 

(Va)(Vx)~ ((Va)((a ~ a) 

(3) (Vx)(Vco(r(x, c~)~--,((V~)(((Vy)(r(y, c~) 

o T(y, ~)))-~ T(x,/3)))) LT 

(5) (VoO(V~(((Vx)(r(x, ~ ) ~  r(x, #))) 

~-*((V3")(((Vx)( T(x, 3,)<--> T(x, a))) 

<->((Vx)( T(x, 3,)<---> T(x,/3)))))) 

(6) ( v , ~ ) ( v # ) ( ( o ~  ~ #) , - ->  (/3 ~ {3'1 o~ ~ 3 ' } ) )  

(7) (v~)(v/3)((~ ~/3) ~ (/3 ~ [~]_)) 

(8) (Va)(V/3)((a ~)<-->((Vx)(T(x, ~)<--> T(x,/3)))) 
D3.1, D3.2 by Trans 

Axiom 3 for Simp 

LT 

for Ra 

(6), by Repl for D3.3 
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(12) (Va)(3a)((Vf l ) ( ( f l~)~--~( /3--a)) )  

(4) by EG 

(8), (10) by Repl and MP 

(9), (11) by Repl and MP 

(18), (19) by Repl 

(3), (20) by Trans 

(1), (21) by Repl 

(21) 

(22) 

(Vx)(Va)(2T(x, [a]__) ~--~ T(x, a)) 

(Va)(Vx) 

(7), (12) by Repl and Trans 

(14) (Va)(3a)([II] =[a]_) (13) by Repl for R2 
\ L a J  / 

~'~((3~)([~1 = [a]- ) )  ) R1, by Repl 

(16) (Va)([~] c{bl(::la)(b=[a]~)} ) (14), (15)byMP 

(17) (Va)([~] ~ )  (16) byReplforD3.5 

(18) (Va~)(Vfl)((/3 e [a]_)  

,~+((Vx)(T(x, o~)~---~ T(x,/3)))) (7), (8) by Trans 

(19) (Vx)(Va)(2T(x, [a]_) 

,~+ ((V/3)((/3 e [a]_)~ T(x,/3)))) D3.4 by Repl 

(20) (Vx)(Va)(2T(x, [a]_) 

<-+ ((V/3)(((Vy)( T(y, a) ~ T(y, /3))) ~ T(x,/3)))) 



< 

v 

< 
,L

 
< 

< 
< 

,--
-. 

I 1
 

i 

'~
 

' 
~

 
~ 

m
 

I 
i 

~ 
I 

i 

i 
i 

I 
~:

~ 
I 

,,.
...

, 



Logical Foundations of Quantum Physics 1347 

(31) by Repl for Exp and Comm 

(33) (Va)(Vc)( ( (Vx)(T(x, H) ~ T(x, ~)))~-~ ((Vc~)(Vx)((aea) 

~(T(x,~)-~ T(x, cQ)))) (32) by Repl for Exp 

(34) (Va)(Vc)(((Vx)(T(x,~)-~T(x,H))) 

(21), (29), (33) by Repl 

~((Vx)(2T(x,c)~2T(x,[o~]_)))))) (34) by Repl for QD 

(36) (Va)(Vc)(((Vx)(T(x,~)~T(x,~))) 
~--~((Vx)(ZT(x,c)~2T(x,[~]_)))) (21), (29) by Repl 

/ 

(37) (Va)(Vc)(((cc~) ^ ((Vc~)((a ~ a) 
\ 

--> ( ( V x ) ( ~ r ( x ,  c) ~ ~r(x ,  lode)))))) 

<-->((Vx)(2T(x,c)-->ZT(x,[~]~)))). (2), (35), (36) by Repl 

(37) by Repl for D3.6 

(39) (Va)(([H] ~?)^( (V~)( (aca)  
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(17), (28), (38) by Con and Repl for QD 

(40) (Va)((3b)((b~&P)A((V~)((c~a)~(b<[a]_))) 

A ((Vc)( ( (c  e ~ )  A ( ( W ) ( ( ~  e a) 

~(c<[c~]_)))),~-~(c<b))))) (39) by EG �9 
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